Для решения большинства задач в математике средней школы необходимо знание по составлению пропорций. Это несложное умение поможет не только выполнять сложные упражнения из учебника, но и углубиться в саму суть математической науки. Как составить пропорцию? Сейчас разберем.

Самым простым примером является задача, где известны три параметра, а четвертый необходимо найти. Пропорции бывают, конечно, разные, но часто требуется найти по процентам какое-нибудь число. Например, всего у мальчика было десять яблок. Четвертую часть он подарил своей маме. Сколько осталось яблок у мальчика? Это самый простой пример, который позволит составить пропорцию. Главное это сделать. Изначально было десять яблок. Пусть это 100%. Это мы обозначили все его яблоки. Он отдал одну четвертую часть. 1/4=25/100. Значит, у него осталось: 100% (было изначально) — 25% (он отдал) = 75%. Эта цифра показывает процентное отношение количества оставшихся фруктов к количеству имевшихся сначала. Теперь у нас есть три числа, по которым уже можно решить пропорцию. 10 яблок — 100%, х яблок — 75%, где х — искомое количество фруктов. Как составить пропорцию? Необходимо понимать, что это такое. Математически это выглядит так. Знак равно поставлен для вашего понимания.


10 яблок = 100%;

x яблок = 75%.

Оказывается, что 10/x = 100%/75. Это и есть основное свойство пропорций. Ведь чем больше x, тем больше процентов составляет это число от исходного. Решаем эту пропорцию и получаем, что x=7,5 яблок. Почему мальчик решил отдать нецелое количество, нам неизвестно. Теперь вы знаете, как составить пропорцию. Главное, найти два соотношения, в одном из которых есть искомое неизвестное.

Решение пропорции часто сводится к простому умножению, а потом к делению. В школах детям не объясняют, почему это именно так. Хотя важно понимать, что пропорциональные отношения есть математическая классика, сама суть науки. Для решения пропорций необходимо уметь обращаться с дробями. Например, часто приходится переводить проценты в обыкновенные дроби. То есть запись 95% не подойдет. А если сразу написать 95/100, то можно провести солидные сокращения, не начиная основного подсчета. Сразу стоит сказать, что если ваша пропорция получилась с двумя неизвестными, то ее не решить. Никакой профессор вам здесь не поможет. А ваша задача, скорее всего, имеет более сложный алгоритм правильных действий.

Рассмотрим еще один пример, где нет процентов.


томобилист купил 5 литров бензина за 150 рублей. Он подумал о том, сколько он бы заплатил за 30 литров топлива. Для решения этой задачи обозначим за x искомое количество денег. Можете самостоятельно решить эту задачу и потом проверить ответ. Если вы еще не поняли, как составить пропорцию, то смотрите. 5 литров бензина — это 150 рублей. Как и в первом примере, запишем 5л — 150р. Теперь найдем третье число. Конечно, это 30 литров. Согласитесь, что пара 30 л — х рублей уместна в данной ситуации. Перейдем на математический язык.

5 литров — 150 рублей;

30 литров — х рублей;

5/30 = 150 / x.

Решаем эту пропорцию:

5x = 30*150;

x = 900 рублей.

Вот и решили. В своей задаче не забудьте проверить на адекватность ответ. Бывает, что при неправильном решении автомобили достигают нереальных скоростей в 5000 километров в час и так далее. Теперь вы знаете, как составить пропорцию. Также вы сможете ее решить. Как видите, в этом нет ничего сложного.

Свойства пропорции и формула

  1. Обращение пропорции. В случае, когда заданное равенство выглядит как 1a : 2b =3c : 4d, записывают 2b : 1a = 4d : 3c. (Причем 1a, 2b, 3c и 4d являются простыми числами, отличными от 0).
  2. Перемножение заданных членов пропорции крест-накрест. В буквенном выражении это имеет такой вид: 1a : 2b = 3c : 4d, а запись 1a4d = 2b3c будет ему равносильна. Таким образом, произведение крайних частей любой пропорции (числа по краям равенства) всегда является равным произведению средних частей (чисел, расположенных посредине равенства).
  3. При составлении пропорции может пригодиться и такое её свойство, как перестановка крайних и средних членов. Формулу равенства 1a : 2b = 3c : 4d, можно отобразить такими вариантами:

    • 1a : 3c = 2b : 4d (когда переставляют средние члены пропорции).
    • 4d : 2b = 3c : 1a (когда переставляют крайние члены пропорции).
  4. Прекрасно помогает в решении пропорции её свойство увеличения и уменьшения. При 1a : 2b = 3c : 4d, записывают:
    • (1a + 2b) : 2b = (3c + 4d) : 4d (равенство по увеличению пропорции).
    • (1a – 2b) : 2b = (3c – 4d) : 4d (равенство по уменьшению пропорции).
  5. Составить пропорцию можно сложением и вычитанием. Когда пропорция записана как 1a : 2b = 3c : 4d, тогда:
    • (1a + 3с) : (2b + 4d) = 1a : 2b = 3c : 4d (пропорция составлена сложением).
    • (1a – 3с) : (2b – 4d) = 1a : 2b = 3c : 4d (пропорция составлена вычитанием).
  6. Также, при решении пропорции, содержащей дробные или большие числа, можно разделить или умножить оба её члена на одинаковое число. К примеру, составные части пропорции 70:40=320:60, можно записать так: 10*(7:4=32:6).
  7. Вариант решения пропорции с процентами выглядит так. К примеру, записывают, 30=100%, 12=x. Теперь следует перемножить средние члены (12*100) и разделить на известный крайний (30). Таким образом, получается ответ: x=40%. Подобным способом можно при необходимости совершать перемножение известных крайних членов и делить их на заданное среднее число, получая искомый результат.

Если Вас интересует конкретная формула пропорции, то в самом простом и распространенном варианте пропорция представляет собой такое равенство (формулу): a/b = c/d, в нем a, b, c и d являются отличными  от нуля четырьмя числами.

Проценты и все о них. Как составить пропорцию? Поймет любой школьник и взрослый

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector